Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta.

نویسندگان

  • Guillaume Chanoit
  • SungRyul Lee
  • Jinkun Xi
  • Min Zhu
  • Rachel A McIntosh
  • Robert A Mueller
  • Edward A Norfleet
  • Zhelong Xu
چکیده

The purpose of this study was to determine whether exogenous zinc prevents cardiac reperfusion injury by targeting the mitochondrial permeability transition pore (mPTP) via glycogen synthase kinase-3beta (GSK-3beta). The treatment of cardiac H9c2 cells with ZnCl2 (10 microM) in the presence of zinc ionophore pyrithione for 20 min significantly enhanced GSK-3beta phosphorylation at Ser9, indicating that exogenous zinc can inactivate GSK-3beta in H9c2 cells. The effect of zinc on GSK-3beta activity was blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 but not by the mammalian target of rapamycin (mTOR) inhibitor rapamycin or the PKC inhibitor chelerythrine, implying that PI3K but not mTOR or PKC accounts for the action of zinc. In support of this interpretation, zinc induced a significant increase in Akt but not mTOR phosphorylation. Further experiments found that zinc also increased mitochondrial GSK-3beta phosphorylation. This may indicate an involvement of the mitochondria in the action of zinc. The effect of zinc on mitochondrial GSK-3beta phosphorylation was not altered by the mitochondrial ATP-sensitive K+ channel blocker 5-hydroxydecanoic acid. Zinc applied at reperfusion reduced cell death in cells subjected to simulated ischemia/reperfusion, indicating that zinc can prevent reperfusion injury. However, zinc was not able to exert protection in cells transfected with the constitutively active GSK-3beta (GSK-3beta-S9A-HA) mutant, suggesting that zinc prevents reperfusion injury by inactivating GSK-3beta. Cells transfected with the catalytically inactive GSK-3beta (GSK-3beta-KM-HA) also revealed a significant decrease in cell death, strongly supporting the essential role of GSK-3beta inactivation in cardioprotection. Moreover, zinc prevented oxidant-induced mPTP opening through the inhibition of GSK-3beta. Taken together, these data suggest that zinc prevents reperfusion injury by modulating the mPTP opening through the inactivation of GSK-3beta. The PI3K/Akt signaling pathway is responsible for the inactivation of GSK-3beta by zinc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3

Chanoit G, Lee S, Xi J, Zhu M, McIntosh RA, Mueller RA, Norfleet EA, Xu Z. Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3 . Am J Physiol Heart Circ Physiol 295: H1227–H1233, 2008. First published July 25, 2008; doi:10.1152/ajpheart.00610.2008.—The purpose of this study was t...

متن کامل

Molecular mechanism underlying Akt activation in zinc-induced cardioprotection.

Our previous study demonstrated that zinc prevents cardiac reperfusion injury by targeting the mitochondrial permeability transition pore (mPTP) via Akt and glycogen synthetase kinase 3beta (GSK-3beta). We aimed to address the mechanism by which zinc activates Akt. Treatment of H9c2 cells with ZnCl(2) (10 microM) in the presence of the zinc ionophore pyrithione (4 microM) for 20 min enhanced Ak...

متن کامل

Glycogen synthase kinase-3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse.

The inactivation of glycogen synthase kinase-3beta (GSK-3beta) is proposed as the event integrating protective pathways initiated by preconditioning and other interventions. The inactivation of GSK-3 is thought to decrease the probability of opening of the mitochondrial permeability transition pore. The aim of this study was to verify the role of GSK-3 using a targeted mouse line lacking the cr...

متن کامل

Mitochondrial kinase signalling pathways in myocardial protection from ischaemia/reperfusion-induced necrosis.

Multiple cardioprotective signal pathways that are activated by ischaemic preconditioning (IPC) and those by IPC mimetics converge on mitochondria. Recent studies have shown that pools of Akt, protein kinase C-ε, extracellular-regulated kinases, glycogen synthase kinase-3beta (GSK-3beta), and hexokinases (HK) I and II, are localized in mitochondria in addition to their pools in the cytosol. Acc...

متن کامل

Cardioprotection of the aged rat heart by GSK-3beta inhibitor is attenuated: age-related changes in mitochondrial permeability transition pore modulation.

It is well established that inhibition of glycogen synthase kinase (GSK)-3β in the young adult myocardium protects against ischemia-reperfusion (I/R) injury through inhibition of mitochondrial permeability transition pore (mPTP) opening. Here, we investigated age-associated differences in the ability of GSK-3β inhibitor [SB-216763 (SB)] to protect the heart and to modulate mPTP opening during I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 295 3  شماره 

صفحات  -

تاریخ انتشار 2008